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Abstract. We present a new strategy for the constrained global optimization of expensive black
box functions using response surface models. A response surface model is simply a multivariate ap-
proximation of a continuous black box function which is used as a surrogate model for optimization
in situations where function evaluations are computationally expensive. Prior global optimization
methods that utilize response surface models were limited to box-constrained problems, but the
new method can easily incorporate general nonlinear constraints. In the proposed method, which
we refer to as the CORS (Constrained Optimization using Response Surfaces) Method, the next
point for costly function evaluation is chosen to be the one that minimizes the current response sur-
face model subject to the given constraints and to additional constraints that the point be of some
distance from previously evaluated points. The distance requirement is allowed to cycle, starting
from a high value (global search) and ending with a low value (local search). The purpose of the
constraint is to drive the method towards unexplored regions of the domain and to prevent the
premature convergence of the method to some point which may not even be a local minimizer of
the black box function. The new method can be shown to converge to the global minimizer of any
continuous function on a compact set regardless of the response surface model that is used. Finally,

we considered two particular implementations of the CORS method which utilize a radial basis



function model (CORS-RBF) and applied it on the box-constrained Dixon-Szegd test functions
and on a simple nonlinearly constrained test function. The results indicate that the CORS-RBF
algorithms are competitive with existing global optimization algorithms for costly functions on the
box-constrained test problems. The results also show that the CORS-RBF algorithms are bet-
ter than other algorithms for constrained global optimization on the nonlinearly constrained test

problem.
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1. Introduction and Motivation.

Global optimization of continuous black box functions that are costly to evaluate is a compu-
tationally challenging problem in engineering design. A single simulation performed to evaluate
the costly function may require the solution of large systems of partial differential equations, and
hence, may take a few minutes to many hours depending on the particular application. Because of
the enormous computational cost involved, an analyst is typically willing to perform only a small
number of function evaluations when optimizing such costly functions. Our goal, then, is to develop
global optimization algorithms that produce reasonably good solutions with a very limited number
of function evaluations.

We now state our problem in more precise terms. Let D be a compact subset of R¢ and let
f : D — R be a deterministic continuous function. The global optimization problem (GOP) is to
find z* € D such that f(z*) < f(z) for all z € D. Note that under the given conditions, f attains
its global minimum value on D. In this investigation, we would like to focus on global optimization
problems where f is a black box function that is costly to evaluate. For simplicity, we first assume

that the domain D is a hypercube in RY, i.e. the problem is box-constrained. Later, in Section 5,



we will consider the situation where D is defined by general nonlinear constraints. Furthermore,
we also assume that the derivatives of f are unavailable and finite-difference approximations are
too expensive to perform. Since f is costly to evaluate, we wish to find a point £ € D such that
f(2) is close to mingep f(z) using only a relatively small number of function evaluations.

There are shortcomings with most of the existing optimization methods for costly black box
functions. Gradient-based algorithms cannot be used in many cases simply because derivatives
are not available and finite-difference approximations are too expensive to perform. Automatic
differentiation techniques sometimes do not produce accurate derivatives because of truncation
error in functions involving the solutions of PDEs or because of the presence of branching in the
code for the black box function (Nocedal and Wright, 1999). In addition, automatic differentiation
cannot be used in cases where the source code for the objective function is not available. A simple
alternative is to use direct search methods like the simplex reflection algorithm by Nelder and
Mead (1965), the DIRECT method by Jones et al. (1993), the Parallel Direct Search algorithm by
Dennis and Torczon (1991), or the more general class of pattern search algorithms (Torczon, 1997).
Direct search methods are derivative-free optimization methods. However, they generally require a
large number of function evaluations since they do not take advantage of the inherent smoothness
of some objective functions. Moreover, with the exception of the DIRECT global optimization
method, the direct search methods mentioned above are only designed to find stationary points.
Hence, global optimization will generally involve several restarts, requiring even more function
evaluations. Finally, heuristic methods like evolutionary algorithms and simulated annealing also
require a very large number of function evaluations to obtain adequately good solutions for global
optimization problems.

A more practical type of optimization method for computationally expensive functions is one

that is based on a response surface model (also known as a metamodel or a surrogate model). By



a response surface model, we simply mean a multivariate approximation of the underlying contin-
uous black box function. The purpose of the response surface model is to serve as an inexpensive
approximation to the costly black box function that can help identify promising points for costly
function evaluation. The most popular of these methods is traditional response surface method-
ology (Box and Draper, 1987; Khuri and Cornell, 1987; Myers and Montgomery, 1995) which
generally involves low-order polynomial regression. Another class of methods are the derivative-
free optimization methods by Powell (1994, 2000, 2002) and by Conn et al. (1997) which utilize
multivariate polynomial interpolation models within a trust-region framework. These methods are
meant for unconstrained optimization problems but they can be easily tailored to deal with box
constraints. They are also designed to find stationary points but they are generally more efficient
than direct search methods. Other response surface methods for costly optimization are those
that rely on kriging models (Booker et al., 1999; Jones, 2001a; Jones et al., 1998; Simpson et al.,
1998) and radial basis functions (Bjérkman and Holmstrém, 2000; Gutmann, 2001b; Ishikawa and
Matsunami, 1997; Ishikawa et al., 1999).

Response surface methods for optimization operate by maintaining an approximate model of
the underlying function to be optimized. The approximate model may be local (i.e. restricted to
a specific subregion of D), as in the case of the derivative-free trust-region methods, or it may be
global, as in the EGO method of Jones et al. (1998) or in the radial basis function method of
Gutmann (2001b), or it may be a combination of both. In the case of methods that utilize a local
response surface model, the region of exploration is periodically shifted and its size adjusted based
on the information provided by newly evaluated points. In the case of methods that utilize a global
response surface model, the global minimum in the approximate model does not usually correspond
to a global minimum of the actual surface. Hence, the approximating global surface is periodically

refitted upon the addition of newly evaluated points. However, a naive implementation of these



methods, where the global minimizer of the current approximating surface is always selected for
function evaluation may converge to some point which may not even be a local minimizer of the
actual function (Gutmann, 2001b; Jones, 2001a).

We will focus our attention on optimization methods that utilize global response surface mod-
els. Jones (1996) proposed a general response surface method that requires a measure of “bumpi-
ness” for the response surface model. Suppose z1,...,z, are previously evaluated points in D.
In each iteration of this method, we choose a target value f* which represents a guess of the
global minimum value of the black box function f and the next evaluation point y is chosen to be
one that minimizes the bumpiness of a response surface model that interpolates the data points
(z1, f(21))y- -+, (zn, f(zn)) and the additional data point (y, f*). Gutmann (2001a, 2001b) found
a suitable measure of bumpiness for radial basis functions and developed a radial basis function
method which he proved converges to the global minimum of any continuous function provided the
target values are selected in a particular manner. Jones et al. (1998) also developed a kriging-based
response surface method called EGO (Efficient Global Optimization) where the next evaluation
point is chosen to be the one that maximizes the expected improvement in the objective function
value. However, it remains a conjecture whether such a method converges to the global minimum
of any continuous function (Jones et al., 1998).

The methods described in the previous paragraph are limited to box-constrained problems. In
this paper, we introduce a new response surface method for global optimization which also works
on nonlinearly constrained problems. We refer to the new method as the CORS (Constrained
Optimization using Response Surfaces) method. In the new method, the next point for costly
function evaluation is chosen to be a point that minimizes the current response surface model
subject to the given constraints that define D and to additional constraints that it should be

of some distance from previously evaluated points. The purpose of the constraint is to drive the



algorithm towards unexplored regions and to prevent the algorithm from prematurely converging to
some possibly undesirable point. To be able to perform both local and global search in this scheme
we allow the distance requirement to cycle between high values (global search) and low values
(local search). Moreover, we also prove that this new method converges to the global minimum
of any continuous function. Finally, we implemented CORS using a radial basis function model
(CORS-RBF) and applied it on the box-constrained Dixon-Szegé test functions (Dixon and Szegd,
1978) and on a nonlinearly constrained test function used by Gomez and Levy (1982). The results
indicate that the CORS-RBF approach is competitive with existing global optimization methods
for costly functions on the box-constrained problems. The results also show that the CORS-RBF
approach is better than other algorithms for constrained global optimization on the nonlinearly

constrained test problem.

2. A New Strategy for Global Optimization using Response Surfaces

2.1 General Framework

We now provide a description of the CORS method for the constrained global optimization of
costly functions using response surfaces. The new strategy is iterative and, in each iteration, the
response surface model is updated and exactly one point is selected for costly function evaluation.
The evaluation point is selected to be one that minimizes the current response surface model subject
to the given constraints (as specified by D) and to some constraints on the distance from previously
evaluated points. The guiding principle behind this method is that the selection of points for costly
function evaluation has the dual goals of: (a) finding new points that have a low objective function
value, and (b) improving the future response surface model by sampling regions of D for which
little information exists. Hence, the selection of the next point for costly function evaluation is

based on the minimization of current response surface model subject to constraints on how close



the next point evaluated can be to previously evaluated points. Of course, there is a limit on how
far a point can be from a previously evaluated point. If zi,...,z, are the previously evaluated

points, then this limit is given by

A =max min ||Z — zj|
zeD 1<j<n

Clearly, it makes no sense to require the distance of the next iterate from the previously evaluated
points to be more than this distance, since this is impossible. Hence, we will require the next
evaluation point to be at least of distance SA from all previously evaluated points, where 0 < 8 < 1.

A general framework for the CORS approach is given below.

Step 1. (Select Initial Points) Set i := 1 and select a finite initial set of points S; =

{z1,...,2} C D for costly function evaluation.

Step 2. (Do Costly Function Evaluation) Evaluate the function f at the points in S;

and update the best function value encountered at every function evaluation.

Step 3. (Iterate) While termination condition is not satisfied do

Step 3.1 (Fit or Update Response Surface) Fit or update a response surface model
/i using the data points D; = {(z, f(z)) : # € S;}.
Step 3.2 (Select Candidate Point) Select the candidate point x4; for function

evaluation to be a point = that solves the following constrained optimization problem:

min f;(x)
subject to

rz €D



where

A; = i i — 2
i=max min 17— (2)

and 0 < 3; < 1 is a parameter to be set by the user. (see discussion below for details)

Step 3.3 (Do Costly Function Evaluation) Evaluate the function f at xyy; and

update the best function value encountered so far.

Step 3.4 (Update Information) S;y; := S;U{zk4}; Div1:= Di U{(zkri, f(Tk+ti)) }

Reset 7 :=17 + 1.

End.

In the above notation, k is the number of initial evaluation points, ¢ denotes the iteration
number, S; is the set of previously evaluated points in iteration ¢, and fz is the response surface
model in iteration ¢. The parameters 3; are set by performing cycles of N + 1 iterations where each
cycle employs a range of values for 3;, starting with a high value close to 1 (global search) and
ending with 3; = 0 (local search). More precisely, 5; = Biyn41 foralli > land 1>y > o > ... >
Bn+1 = 0. We refer to N as the cycle length and we refer to the sequence (f1, fo,...,0n+1 = 0)
as the search pattern. We also refer to the constrained minimization problem (1) in Step 3.2 as the
CORS auziliary problem (CORS-AP) or simply the auziliary problem.

For simplicity in the discussion below, we use the term mazimin point to refer to the point
in D which is as far away as possible from any previously evaluated point. The expression A; in
(2) represents the distance of the maximin point from the closest previously evaluated point. In
iteration ¢, we are requiring the candidate evaluation point to be of distance at least 5;A; from
the closest previously evaluated point. Solving the auxiliary problem with 8; = 1 is equivalent to

finding a maximin point. On the other hand, solving the auxiliary problem with ; = 0 is equivalent



to simply minimizing fz over D. A search pattern of the form (0) represents pure greedy search
whereas a search pattern of the form (1) represents pure exploratory search. A search pattern that
includes a range of values between 0 and 1 such as (0.90,0.75,0.25,0.05,0.03,0) balances global and
local search and is generally more desirable than the extremes of pure greedy and pure exploratory
search.

In any implementation of the CORS method, we have stipulated that the end of a search pattern
be 0. The purpose of this requirement is to ensure that we are doing the most natural thing of
minimizing the response surface model subject to the constraints in D every N + 1 iterations. Note
that the user may specify a search pattern with more zeros. In fact, we can even do a search
pattern with all zeros (pure greedy search). However, such a procedure is not recommended since
it is prone to prematurely converging to a point that may not even be a local minimizer of the
original function f(z) (Gutmann, 2001b; Jones, 2001). This happens when the minimizer of f; in
D (which is the next evaluation point) is a previously evaluated point. We address this issue below
(in Section 2.2).

As we will see later in Section 3, the minimization of f; in each iteration is not really necessary
for the convergence of the method to a global minimum point. What is more important is that the
candidate point for costly function evaluation satisfies the constraint in Step 3.2 above for some
strictly positive 8; for infinitely many 7. In addition, the requirement that each search pattern
is a non-increasing finite sequence ending with 0 is also not necessary for convergence. Rather
these requirements are simply heuristics that are meant to speed up the process of finding a global
minimum point for the original objective function. In fact, the only requirement for convergence is

to have a search pattern with at least one nonzero entry.

2.2 Implementation Issues



Any algorithm that follows the CORS framework requires two components: (a) a scheme for
selecting an initial set of points for costly function evaluation, and (b) a procedure for globally ap-
proximating the unknown costly black box function in any iteration (i.e. a response surface model).
The first component can be provided by various experimental design techniques ranging from sim-
ple grids to Latin hypercubes (McKay et al., 1979) and orthogonal arrays. The paper by Koehler
and Owen (1996) describes various experimental design techniques. For the second component,
we can use various multivariate approximation schemes including polynomial regression, kriging
(Cressie, 1993; Sacks et al., 1989), radial basis functions (Powell, 1992; Powell, 1999), multivariate
adaptive regression splines (Friedman, 1991), and neural networks. As will be seen below, the main
convergence result for the CORS method does not depend on either the initial evaluation points or
on the particular response surface model being used.

Another important issue is the computation of A; as defined in (2). Gutmann (2001a) showed
that, in the case where D is defined by box constraints, the computation of A; may be converted
into a concave minimization problem and may be solved via an outer approximation algorithm as
described in Horst et al. (1995). In practice, we can approximately solve (2) by maintaining a set
of points that “cover” D (i.e. that are spread all throughout D) and selecting the farthest from
any previously evaluated points.

Note that the auxiliary optimization problem described above (in Step 3.2) is generally non-
convex. Fortunately, its objective function and its constraint functions are cheap to evaluate.
Moreover, the gradients of the objective function and constraint functions of the auxiliary problem
are also easy to obtain and evaluate. Hence, we can take advantage of state-of-the-art software
for gradient-based optimization to solve the auxiliary problem. Since the problem is nonconvex,
there is no guarantee of finding a global minimizer for the auxiliary problem. Hence, we typically

perform several runs of a nonlinear programming solver with different starting points and the eval-
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uation point is selected to be the local minimizer that has the lowest function value among the
local minimizers that were obtained. Another option is to run a global optimization method such as
Constrained DIRECT (Jones, 2001b) and refine its solution by starting a nonlinear programming
solver from that point.

One problem that arises when using the CORS method is that it could happen that the best
local minimizer for the auxiliary problem (i.e. the candidate evaluation point) in some iteration
is a previously evaluated point. Note that this can only occur if §; = 0. When it does occur, we

simply reset 3; = 0.01 and solve the resulting auxiliary problem.
3. Convergence

Let D C R? be compact and let f : D — R be a continuous function. Also, let A be an
optimization algorithm whose sequence of iterates is {zy}r>1. We say that A converges to the
global minimum of f if min;<;<x f(z;) | mingep f(z) as k 1 co. Our starting point is the following

theorem:

Theorem 1. (Torn and Zilinskas, 1989) Let D be a compact set. Then an algorithm converges
to the global minimum of every continuous function on D if and only if its sequence of iterates is

everywhere dense in D.

To prove the convergence of the new method, Theorem 1 states that we only need to ensure
that the sequence of trial points is dense in D. Below is our result that naturally leads to a proof

of the convergence of the CORS method.

Theorem 2. Let D be a compact set and let {fﬁk}kzl C R? be the sequence of iterates generated

by an algorithm A. Suppose there exists a strictly increasing sequence {n;};>1 of positive integers

11



such that z,, satisfies the following condition for some 0 < o < 1:

i — x| > i — > 1
1§;?£,2,1“x"t xkll_aryneaglggggfllly zll, VE>1, (3)

Then A converges to the global minimum of f on D.
Proof. Define the sequence {s;};>1 by

— mi — 2. 4
St 15?53_1”% | (4)

Suppose {z} is not dense in D. Then there exists z € D and § > 0 such that the open ball centered

at  with radius 0 does not contain any element of the sequence {z}. This implies that
1z —zll >0 VE>1, (5)
and so, from (3)-(5)

s¢ > amax min |y — gl > @d >0, Vi>1
y€D 1<k<n;—1

Let ad = e. Since s; > € for all t > 1, we have ||z, — @p, || > € for any 7 > j. Since D is compact,
it follows that it is bounded. Let B be a hypercube that contains D whose side length is re/(2v/d)
for some positive integer r. Partition B into r? equal-sized hypercubes where each hypercube has
side length €/(2v/d). Now the condition on {z,, }¢>1 implies that no two of these points can belong
to a single sub-hypercube. But this is a contradiction since {z,,};>1 is an infinite set of distinct

points. Thus, {z}}r>1 must be dense in D. QED

Corollary 3. Any CORS method where the search pattern contains at least one nonzero entry
converges to the global minimum of any continuous function for any choice of response surface

model and for any choice of initial evaluation points.

Proof. Let N be the cycle length. Suppose the j** entry of the search pattern is nonzero. Let

ng =7+ (t—1)(N 4+ 1) for all ¢ > 1. By assumption, we have §,, = a > 0 for all ¢ > 1. Now the

12



constraints in Step 3.2 of Section 2.1 show that the candidate evaluation point satisfies condition

(3) above. QED

The advantage of this result is that it is independent of the choice of the initial evaluation
points and it is also independent of the particular response surface model that is being used. In
fact, it is not even necessary that we solve the auxiliary optimization problem in Step 3.2 above
in order to guarantee the convergence of the method. All we need is that the candidate point for
function evaluation satisfy the constraints in Step 3.2. However, for practical purposes, it should
be intuitively clear that the rate of convergence is somehow dependent on how well the response
surface model approximates the underlying costly function and also on how well we are solving the

CORS-AP in Step 3.2.

4. Computational Experiments

4.1 Description

To test the performance of the CORS method, computational experiments were performed on
some benchmark box-constrained test functions using a radial basis function model initialized using
the corners of each hypercube domain. We refer to the resulting CORS method as CORS-RBF.
The new algorithm was tested on the Dixon-Szego test functions (Dixon and Szego, 1978) for global
optimization. These functions are not really costly to evaluate but their shapes are complex and
multimodal, and hence, the relative performance of algorithms on these test functions is expected
to mimic performance on costly functions. Table 1 shows the characteristics of the Dixon-Szego
test functions. The actual functional expressions can be found in Dixon and Szegt (1978).

To assess the significance of the proposed method, it is necessary to compare its performance

against the existing derivative-free methods for the global optimization of costly functions. Our new
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Table 1: The Dixon-Szeg6 Test Functions (Dixon and Szego, 1978).

Test Function Dimension Domain No. of No. of Global
local min global min min value
Branin 2 [—5,10] x [0,15] 3 3 0.398
Goldstein-Price 2 [—2,2]? 4 1 3
Hartman3 3 [0,1]? 4 1 —3.86
Shekel5 4 [0, 10]* 5 1 —10.1532
Shekel7 4 [0,10]* 7 1 —10.4029
Shekel10 4 [0, 10)* 10 1 —10.5364
Hartman6 6 [0, 1]° 4 1 —3.32

method was compared with the RBF method developed by Gutmann as implemented by Gutmann

(2001b) and as implemented by Bjérkman and Holmstrom (2000), the EGO method by Jones et

al. (1998), and the DIRECT method by Jones et al. (1993). The performance of the different

methods were compared on the Dixon-Szego test functions.

4.2 Radial Basis Function Model

We now discuss the response surface model that was used in our implementation of the CORS

method. The interpolation model that will be described below was extensively studied by Powell

(1992, 1999) and was used as the basis of the RBF method by Gutmann (2001b).

Assume that we are given n distinct points z1, . .

In this method, we use an interpolant of the form

s(x) =Y Nid(l|lz — zill) + p(z), =R’

=1

14

., &, € R? where the function values are known.



where || - || is the Euclidean norm in R%, \; € Rfori =1,...,n, pisin I1% (the space of polynomials

in d variables of degree less than or equal to m), and ¢ is one of the following forms:

p(r) = r (linear), \

p(r) = r (cubic),

p(r) = r?logr (thin plate spline), ¢ 720,
(r) = r2++2 (multiquadric),

pr) = e (Gaussian), J

where  is a positive constant.

Fix ¢. Define the matrix ® € R"*" by:

S

Moreover, define

—1 if ¢ is Gaussian

Mg =194 0 if ¢ is linear or multiquadric

1 if ¢ is cubic or the thin plate spline
and let m > mgy. Let m be the dimension of the linear space ¢, let py,...,pp be a basis of this

linear space, and define the matrix P as follows:

pl(,’L‘l) pm(,’L‘l)

D1 ($n) cee p7h($n)

In this model, the RBF that interpolates the points (z1, f(z1)),. .., (zn, f(zn)) is obtained by

solving the system



where F = (f(21),---, f(zn)T, A = (A1,..., \)T € R and ¢ = (ci, ..., c3)T € R™. Powell (1992)
showed that the matrix
A= c R(n+m)x(n+ri)
PT 0

is nonsingular if and only if x4, ..., z, satisfy the property:

geNe and q(z;)=0,i=1,...,n, = ¢q=0.
Hence, in this case, the resulting RBF interpolant s(x) is unique.
4.3 Experimental Setup

Two implementations of the CORS-RBF algorithm with different search patterns were applied
to each of the Dixon-Szego test functions. We used a particular radial basis function model of
the form (6) where ¢ is a thin plate spline and p(x) is a linear polynomial. The initial evaluation
points were chosen to be the corners of the hypercube domain of each test function. The reason
for these choices of response surface model and initial evaluation points is that these were the ones
used by Gutmann (2001b) in his computational experiments with his RBF method. Tt is necessary
to achieve fair comparison with Gutmann’s method since it is among the most recent methods
proposed for the global optimization of costly functions. For the implementations of CORS-RBF
we used a cycle length of 4 with a search pattern of SP1 = (0.95,0.25,0.05,0.03,0) and a slightly
longer cycle of length 5 with a search pattern of SP2 = (0.9,0.75,0.25,0.05,0.03,0). The high
values for the parameter (; are responsible for the global aspect of the search while the low values
are responsible for local search. Values of g; that are close to 0 are essential for the success of the
method since these allow the algorithm to explore points near the vicinity of some good previously
evaluated points. Finally, we also adopted a strategy used by Gutmann (2001b) of replacing large

function values by the median of all available function values. The purpose of this transformation
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is to prevent oscillations in the RBF interpolant that are due to the large differences in function
values.

In solving the auxiliary problem in Step 3.2 of the algorithm, we need to compute the maximin
distance. As noted earlier, we could convert this into a concave minimization problem and solve
it using an outer approximation algorithm. In this investigation, we solved this problem approxi-
mately by maintaining a set of points in a relatively fine grid that “covers” the entire hypercube
domain. We shall refer to these set of points as cover points. Before the first iteration, after we
have specified the initial evaluation points, we determine the distance between each cover point
and each initial evaluation point. For each cover point, we compute its minimum distance from
the initial evaluation points. We store these minimum distances in a vector of length equal to
the number of cover points. Then in each iteration, we compute the distances between the newly
evaluated point and the cover points and update the vector of minimum distances. Note that the
vector of minimum distances allows us to obtain an approximate maximin point by simply selecting
the cover point whose distance is as far away as possible from previously evaluated points. This
estimate of the maximin point is further refined by performing a local greedy search starting at the
current approximate maximin point.

Once we have an estimate of the maximin distance, we solve the auxiliary problem using the
DIRECT global optimization method (Jones et al., 1993; Jones, 2001b). The solution obtained by
DIRECT is refined by starting a nonlinear programming (NLP) solver from that point. Moreover,
we also run the NLP solver from multiple randomly generated starting points near the vicinity of the
solution found by DIRECT. Note that most NLP solvers will work with infeasible starting points
so0 it is not a problem if a starting point violates some of the distance constraints. The best solution
obtained in any of these optimization runs is taken to be the solution to the auxiliary problem. Note

that there is no guarantee that we are really finding an optimal solution to the auxiliary problem.
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However, recall that the convergence result only requires that each iterate satisfy the constraint in
the auxiliary problem. Hence, any method that only approximately solves the auxiliary problem
will still converge to the global minimum point.

All numerical computations were performed in Matlab R13. The auxiliary problems were solved
using the glcFast (for 8; # 0) and glbFast (for 8; = 0) routines of Tomlab (Holmstrom, 1999) which
implement DIRECT (Jones et al., 1993) and Constrained DIRECT (Jones, 2001b), respectively.
The NLP solver used is the fmincon subroutine of the Matlab Optimization Toolbox (2000). For
efficient optimization using fmincon, we supplied the gradients of the RBF model and the distance

constraints since these were easy to compute.

4.4 Results

In Table 2, we recorded the number of function evaluations performed by each of the CORS-
RBF methods to get a relative error of < 1% for each test function. If f* is the global minimum
value and fpes is the best value obtained by an algorithm, then the relative error is given by
| foest — f*|/|f*] provided that f* # 0. For comparison purposes, we included the results of the radial
basis function method by Gutmann (2001a, 2001b) as implemented by Gutmann (2001b) (RBF-G)
and as implemented by Bjorkman and Holmstrom (2000) (rbfSolve). Bjorkman and Holmstrom
(2000) experimented with several variations of how to implement Gutmann’s RBF method. We
only report their most successful result where ¢ is cubic, the search space was transformed to the
unit hypercube, and large function values were replaced by the median of all available function
values. They did not have much success with the case where ¢ is a thin plate spline with some runs
being terminated before getting a solution with relative error < 1%. We also included the results
of the EGO method by Jones et al. (1998), and the DIRECT method by Jones et al. (1993) as

presented in Gutmann’s paper.
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Table 2: Comparison of global optimization algorithms on the Dixon-Szego test functions. The

values in the table indicate the number of function evaluations to get a relative error of < 1%.

Test Function CORS-RBF CORS-RBF RBF-G rbfSolve DIRECT EGO

SP 1 SP 2
Branin 34 40 44 26 63 28
Goldstein-Price 49 64 63 27 101 32
Hartman3 25 61 43 22 83 35
Shekelb 41 52 76 96 103 -
Shekel7 46 64 76 72 97 -
Shekel10 51 64 o1 76 97 -
Hartman6 108 104 112 87 213 121

The results on Table 2 indicate that CORS-RBF (SP1) is consistently better than RBF-G
on all Dixon-Szego test functions except on Shekell0 where the two algorithms have the same
performance. The results for CORS-RBF (SP2) are consistently worse than those for CORS-RBF
(SP1) except on Hartman6 where CORS-RBF (SP2) is slightly better than CORS-RBF (SP1).
However, CORS-RBF (SP2) is very much competitive with RBF-G. It is better than RBF-G on
the Branin, Shekel5, Shekel7, and Hartman6 test functions and it is worse than RBF-G on the
Hartman3 and Shekell0 test functions. On the Goldstein-Price test function, the performance of
CORS-RBF (SP2) is only slightly worse than RBF-G.

The CORS-RBF algorithms are not as good as rbfSolve on the Branin, Goldstein-Price and
Hartman6 test functions. However, it is much better than rbfSolve on the Shekelb, Shekel7 and

Shekel10 test functions. Moreover, CORS-RBF (SP1) is competitive with rbfSolve on the Hartman3
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test function. The CORS-RBF algorithms are also consistently much better than DIRECT on all
of the Dixon-Szego test functions. EGO is better than the CORS-RBF algorithms on the Branin
and Goldstein-Price test functions. However, CORS-RBF (SP1) is much better than EGO on
Hartman3. Moreover, for the higher dimensional Hartman6 test function, we see that the CORS-
RBF methods are better than EGO. These results demonstrate the potential of the CORS-RBF
method for computationally expensive real-world optimization problems. The CORS-RBF method
is also attractive for practitioners in the sense that it is based on simpler ideas, it is easier to code

than either the EGO method and Gutmann’s RBF method, and yet it achieves comparable results.

5. Extension to Nonlinearly Constrained Global Optimization

While the paper has focused on box-constrained global optimization (i.e. D is defined by box
constraints), the CORS method is easily extended to handle nonlinear constraints. The method
still works in the general case where D is defined by nonlinear constraints provided D remains
compact and the auxiliary problem in Step 3.2 is tractable. Moreover, the proof of convergence
only requires that D be compact, and so, it also holds in the general case.

In the implementation of CORS for a nonlinearly constrained global optimization problem, one
has to be careful in making sure that the initial evaluation points all satisfy the constraints. One
has to construct a space-filling design whose points all lie in the domain D. Moreover, the maximin
point computed in Step 3.2 (Section 2.1) of the algorithm must be in D (i.e. it must satisfy the
nonlinear constraints). In our implementation, we find an approximate maximin point by choosing
a feasible cover point (i.e. a cover point satisfying the nonlinear constraints specified by D) which
is as far away as possible from previously evaluated points.

The procedure for solving the auxiliary problem will depend on what kind of constraints define

D. Note that in a real problem, there are constraints whose violation will result in an undefined
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objective function value (e.g. some input values will cause the simulation that computes the ob-
jective function value to crash). We shall refer to these constraints as hard constraints. If D is
defined by hard constraints, then we have to use feasible algorithms (i.e. algorithms that do not
step on infeasible territory) to solve CORS-AP. For simplicity, we assume in this investigation that
there are no hard constraints in D. Moreover, we assume that D is defined by constraint functions
that are computationally cheap to evaluate. In this situation, we proceed in the same manner as
before and solve the auxiliary problem using Constrained DIRECT followed by a refinement of the
solution by starting a nonlinear programming solver at that point.

Finally, fitting the response surface model is not much harder in the nonlinearly constrained
case since we simply fit the model as though the constraints were absent. While fitting a response
surface model over infeasible territory (i.e. over regions outside of D) may sound absurd, this
should be alright as long as the response surface model still provides a good approximation over
the feasible region.

To illustrate how the method works on a simple constrained problem, we have applied CORS-
RBF to the “Gomez # 3” problem that was used by S. Gomez and A. Levy (1982) to test a
tunneling algorithm and subsequently used by D. Jones (2001b) to test his Constrained DIRECT

algorithm. The problem formulation is as follows:

4
Minimize (4 — 2122 + ﬂ) T3 + 122 + (—4 + 423)73

3
subject to:
—sin(4nzy) + 2sin®(27zy) <0
—1<z,29 <1
The optimal solution to this problem is (0.109,—0.623) with an objective value of —0.9711. Note

that for this problem, the corners of the box defined by the upper and lower bounds on z1 and z-

are all feasible so we implemented CORS-RBF using these points as the initial evaluation points.
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Table 3: Comparison of global optimization algorithms on the Gomez # 6 Problem. The values in

the table indicate the number of function evaluations to get a relative error of < 1%.

Method No. of Evaluations
Tunneling Algorithm (Gomez and Levy, 1982) 1053
Constrained DIRECT (Jones, 2001b) 89
CORS-RBF (SP 1) 53
CORS-RBF (SP 2) 30

The results for different algorithms are summarized in Table 3. The values in the second column
represent the number of function evaluations required by an algorithm to get a relative error of
< 1%. The results for CORS-RBF are very encouraging and are much better than those obtained
by the Tunneling Algorithm and the Constrained DIRECT algorithm. Of course, we would need
to explore the algorithm’s performance on a more comprehensive set of constrained test problems
before we could say anything conclusive about its performance when constraints are added. But
the simple example just presented, combined with the results on the box-constrained Dixon-Szego

test problems, suggest that this performance will be quite good.

6. Conclusions

We have introduced the CORS method which is a new strategy for the constrained global op-
timization of costly functions. We have shown that the method converges to the global minimizer
of any continuous function defined on a compact set. Moreover, this convergence result is indepen-
dent of the particular response surface model being used and it is also independent of the choice
of the initial evaluation points. Finally, computational experiments using radial basis functions in-

dicate that CORS-RBF is a promising approach for constrained global optimization. CORS-RBF
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methods are competitive with existing global optimization methods for costly functions on the box-
constrained Dixon-Szego test problems and they are better than other methods on a nonlinearly

constrained test problem.
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